Abstract
The interference of an impinging plane oblique shock wave with the viscous shock layer on a cylinder has been studied numerically for rarefied-gas flow regimes at the Reynolds numbers $15.5 \leq \text{Re}_{R,0} \leq 124$ and Knudsen numbers $0.1 \geq \text{Kn}_{R,0} \geq 0.012$. The calculations have been performed within the framework of the direct simulation Monte-Carlo technique [1] and the Navier-Stokes equations for a perfect gas using the shock capturing method [2]. The principal properties of flow parameters have been studied for five different types of interference at low Reynolds numbers. The differences with respect to the previously investigated interference regimes for high Reynolds numbers have been examined. The comparison analysis of numerical results and experimental data has been provided. It has been found that the local pressure and heat transfer coefficients on the surface of a cylinder may considerably (by a factor of 3.5) exceed the values on the edge stagnation line observed in the absence of interference. The type IV interference pattern observed in continuum flows has not been found in this study.

1 Introduction
The optimum flow rate through the air intake of a hypersonic vehicle occurs when the forebody oblique shock wave impinges on the blunt edge of the air intake [12, 13]. For hypersonic continuum flow conditions, six types of interference patterns between an impinging oblique shock and a viscous shock layer about a cylindrical blunt edge have been studied by Edney [14], Wieting and Holden [15], Borovoi [16], Borovoi et al. [17], Purpura et al. [18], and Tannehill et al. [19]. These studies indicate that the surface pressure and heat flux may considerably exceed the stagnation line values in the absence of interference. The rarefied hypersonic flow regimes have been analyzed in experiments of Botin [4] and Pot et al. [3].

In the present study, the interference of an impinging shock with the viscous shock layer on a cylinder modeling a hypersonic inlet edge has been studied experimentally and numerically for rarefied flow regimes as characterized by Reynolds numbers $15.5 \leq \text{Re}_{0} \leq 124$ and Knudsen numbers $0.1 \geq \text{Kn}_{R} \geq 0.012$. The numerical results have been obtained by using the direct simulation Monte Carlo (DSMC) technique [6] and by solving the Navier-Stokes equations while employing a shock capturing method [10]. The DSMC-DS2G computer code [7] was developed by G. Bird. Results are compared with experimental data obtained in a vacuum wind tunnel by using the thermal sensitive coating technique [4-5].

2 Flow Patterns
We consider the interference of steady flow around an infinite circular cylinder and an impinging oblique shock in a hypersonic stream of rarefied air. The plane oblique shock with inclination angle β is generated by a wedge with an apex angle θ. The flow patterns over the
cylinder had been discussed in detail by Edney [14], Borovoi [16], and Purpura et al. [18].

Let us suppose that the oblique shock meets the bow shock ahead of a cylinder at different locations, thereby generating different interference type patterns:

a) Type I interference is characterized by the formation of two shocks after the intersection of two oblique shocks of opposite families. The intersection point is sufficiently downstream of the sonic point on the bow shock wave.

b) Type II interaction reflects the Mach phenomenon [14, 16-18] and produces two triple points separated by a normal shock after the intersection of the two oblique shock waves.

c) If the oblique shock crosses the strong bow shock, a slip line is produced separating subsonic area from a supersonic flow zone. In the type III interference case, the slip line reattaches on the body surface. This case would be only possible in continuum at small inclination angles, $\beta \leq 20$ deg. [14, 18]

d) If the slip line is unable to reattach on the wall, a supersonic jet, bounded by subsonic regions, develops (type IV) [14, 16]. The special case of a curved supersonic jet (type IVa) was studied by Purpura et al. [18].

e) Both weak oblique shock waves of the same direction would interact above the upper sonic line generating a supersonic jet after the upper multiple point (type V) [18].

f) Far from the leading critical point of the cylinder, a shock, a slip line and an expansion wave would be generated behind the triple point above the considered region (type VI) [16-18].

For continuum flows, the theory of shock polars [3, 18] can be effectively used to predict the localization of the different interference types around a cylinder. In the present study, a similar technique has been employed to estimate boundaries of interaction zones, as well as upstream boundary locations.

Fig. 1 Visualization of different type interactions by electron-beam fluorescence at $Re_\theta = 15.5$ ($Kn_R = 0.1$): a) type I, b) type II, c) type III; d) type V, e) type VI, and f) no interference.
3 Experimental Techniques and Results
The experiments have been carried out in a vacuum wind tunnel at low-density uniform airflow parameters: $M_\infty = 6.5$, $T_0 = 1000 \text{ K}$, $p_0 = 4000 \text{ N/m}^2$, and $t_w = 0.31$. The model is a plate with a cylindrical edge of radius $R = 0.01 \text{ m}$. The flow can be characterized by similarity parameters: the Reynolds number $Re_0 = 15.5$ and the Knudsen number $Kn_R = 0.1$.

Fig. 2 Comparison between experimental and numerical results of local Stanton number ratio distributions around a cylinder at $Re_0 = 15.5$ ($Kn_R = 0.1$) for different types of shock/shock layer interference: a) type I; b) type II; c) type III; d) type V, and e) type VI.
The plane oblique shock wave was generated by a wedge with an apex angle $\theta = 20$ deg, and the resulting shock inclination angle β was approximately 27 deg. A string transverse mechanism was used to position the wedge at various positions along the Y-axis to simulate the different interaction patterns.

The electron-beam fluorescence technique [4] was used for flow visualization. Five different cases of interference were found in the experiments (see Figs. 1a–1e corresponding to types I, II, III, V, and VI). The flow patterns can be compared with the flow near the cylinder without interference as presented in Fig. 1f.

The local heat flux to the model surface elements was measured by using the mono-layer thermal sensitive coating technique [4-5]. The accuracy of the heat-flux data was studied in detail by Ardasheva et al [5]. The data errors are estimated to be approximately 20 to 40 percent, with the larger errors occurring in the strong interaction. The distributions of the local Stanton number ratios St/St_0 are shown in Figs. 2a–2e for the five types of shock-waves interactions and compared with numerical results.

4 The Navier-Stokes equations

The system of Navier-Stokes equations, analogous to that presented in Refs. 4, 10, and 11 have been solved numerically. The meridian angle φ is varied over the interval $-90 \leq \varphi \leq +90$ deg. The steady-state equations in the arbitrary curvilinear coordinate system $\xi = \xi(x, y)$, $\eta = \eta(x, y)$, where x and y are Cartesian coordinates, have been written in conservation form [4].

The equations have been nondimensionalized with respect to the parameters of free-stream velocity, density, temperature and viscosity. The cylinder radius R is used as a characteristic length scale parameter. The main similarity parameters are the Reynolds number Re_0, the Mach number M_∞, and the temperature factor T_w.

The outer boundary is divided into two parts: one part with uniform free-stream conditions at the constant Mach number M_∞, and the other with the conditions behind an inclined plane shock [20] (see Fig. 3). The velocity slip and temperature jump effects [21] are considered at the body surface.

NOTATION:
1 – The boundary of shock layer;
2 – The inclined shock;
3 – The sonic line;
4 – The mixing layer;
5 – The inner shock;
6 – The calculation domain for the Navier-Stokes equations;
7 – The wedge.

NOTE: This pattern is for the Type-III interference.

Fig. 3 The general flow pattern and calculation domain used by the Navier-Stokes solver.

The numerical method has been described in detail in Refs. 4, 10, and 11. A set of FORTRAN standardized programs [11] has been used to solve the problem. The grid contains 44 nodes related to the surface curvilinear coordinate ξ and 41 nodes along the normal η. The finite-difference program is a second-order accurate scheme.

5 The direct simulation Monte-Carlo (DSMC) method and computational parameters

The DSMC method [6] and DS2G code [7] are used in this study as a numerical simulation technique for low-density gas flows. Molecular collisions in air are modeled using the variable hard sphere molecular model [6]. The gas-surface interactions are assumed to be fully diffusive with full momentum and energy accommodation. The code validation [1, 9] was tested in comparing numerical results with experimental data [8] related to the simple-shape bodies.

For the DSMC calculations, the computational domain was subdivided into six zones with a total of 8400 cells, where the cells were populated with an average of 7 molecules per cell (see Fig. 4). Acceptable results are obtained for an average of at least ten molecules per cell in the most critical region of the flow [6, 9].
error was pronounced when this number falls below five (i.e., flow in the behind the cylinder). In all cases, the usual criterion \([7] \) for the time step \(\Delta t_m \) has been realized, \(2 \times 10^{-7} \leq \Delta t_m \leq 1 \times 10^{-6} \) s. Under these conditions, heat flux, aerodynamic coefficients, and gas-dynamic parameters are insensitive to the time step.

Fig. 4 The calculation domain used by the DSMC solver.

The location of the external boundary with the upstream flow conditions varies from \(2.5R \) to \(3.5R \). Calculations were carried out on a personal computer. The computing time of each variant was 10 - 60 h.

6 Results and Discussion

The numerical results obtained with the Navier-Stokes technique are presented in Figs. 2a-2e in the form of a distribution of Stanton number ratio \(St/St_0 \) distributions along the cylindrical surface. Five (types I, II, III, V, and VI) of the six known types of interference patterns described in Refs. 3, 14-18 have been found for the current rarefied air conditions (\(Re_0 = 15.5; Kn = 0.1; M_{\infty} = 6.5; T_0 = 1000 \text{ K}; t_w = 0.31; \theta = 20 \text{ deg}; \text{ and } \beta = 27 \text{ deg} \)).

Mach number contours obtained by the DSMC technique under the same airflow conditions are shown in Figs. 5a-5c for Types II, III, and V interactions. Similar contours obtained with the Navier-Stokes equations are shown in Figs. 6a and 6b.

Fig. 5 Mach number contours calculated by the DSMC technique at \(Re_0 = 15.5 \) (\(Kn = 0.1 \)) for different types of interaction: a) type II, b) type III, and c) type V.
Heating results for the type I interference are shown in Fig. 2a. The stagnation point has almost returned to its position in the absence of interference. Inhomogeneities of the shock wave or mixing layer type have not been found in the shock layer. The heat transfer coefficient distribution also tends to the distribution obtained in the absence of interference.

Computed and measured heating distributions for the type II interference are shown in Fig. 2b. This type of interaction is observed when the oblique shock impinges on the supersonic region of the shock layer below the regular stagnation line. At high Reynolds numbers, a subsonic jet, bounded by the surfaces of the mixing layers departing from the lower and upper triple points, is formed within the supersonic flow in the shock layer [19]. An inner shock also departs from the upper triple point, crossing the shock layer to the surface of the cylinder. At high Reynolds numbers, this shock produces a sharp increase in the pressure and heat flux to the surface of the blunt body in the zone of impingement.

At moderate Reynolds numbers, visualization [16] and analysis of numerical data do not reveal inner shocks and mixing layers in the viscous shock layer. Only the change of shock layer configuration related to the type II interference has been observed. The stagnation point is displaced significantly downwards along the surface coordinate. In the vicinity of the stagnation point, both in the calculations and in the experiments [16], the local heat flux has a maximum value. However, the heating values are smaller than the corresponding values for types III, V, and VI interactions.

Figure 2c presents the surface heating distributions for the type III interference. According to Refs. 14, 17, and 19, at high Reynolds numbers, the maximum pressure and heat flux values correspond to the region where the secondary shock impinges on the boundary layer (the type III interference). At moderate Reynolds numbers, it has been found [4] that the maximum values of the heat flux are attained not in the surface-secondary-shock interaction zone but, as before, in the vicinity of the stagnation point displaced in the direction of negative ϕ. In this flow regime, the greatest increase in the maximum value of the heat flux is observed as compared with regular flow without interference (see Fig. 2c).

At high Reynolds number conditions, the type IV interference (Refs. 15-19) produces the maximum pressure and heat flux. In our study, the type IV interference is not found. At low Reynolds numbers, it appears that no supersonic jet is formed. This result occurs because the shock layer is completely viscous and mixing-layer boundaries and the inner shocks in the viscous shock layer are thick. Therefore, as the wedge is displaced downward along the Y-axis, the type V interference becomes a type III interference, bypassing type IV.
Substantial differences are observed between the flow patterns for the type V interference at high Reynolds numbers (Refs. 16, 19) and the low Reynolds numbers in this study. The cause of the local increase in the pressure and the heat flux to the body surface at high Reynolds numbers is the interaction between the secondary shock passing through the bow shock wave and the boundary layer on the body. At low Reynolds numbers the entire region from the bow shock to the body is a thick viscous shock layer. In this case, the secondary shock dissipates in the shock layer and no longer causes a local increase in the pressure and the heat flux to the surface. No secondary shock was observed in the experiments.

The calculated Mach number contours for the type V interference are presented in Figs. 5c and 6b, using DSMC and Navier-Stokes approaches, respectively. Significant changes of the flow structure can be observed in the area below the shock intersection point. The level of air compression in this zone is much higher than behind the bow shock wave in the absence of interference. The interaction increases the heat flux by approximately 20% in the vicinity of the leading stagnation point (see Fig. 2d).

Figure 2e shows the type VI interference that results when the oblique shock impinges on the upper supersonic region of the shock layer at a sufficient distance from the stagnation point. Behind the interference zone, the shock layer thickness increases significantly because the flow behind the oblique shock affects almost the entire region in front of the blunt body. This leads to a redistribution of the flow parameters in the shock layer and to a change in its structure. The stagnation point is displaced into the region of negative φ. In the vicinity of this point there is a significant increase in the values of the local heat flux. The calculated results are compared with experimental data [4] (solid rectangles) and the distributions of the calculated values of the local Stanton numbers in the absence of interference (dashed line). At $\varphi < -35$ deg, the experimental values of the local heat flux are significantly lower than the calculated values. In experiments provided by the thermal indicator coating method [5], the study region lies in the wake of expanding flow from the wedge trailing edge. This feature is also present, although to a smaller extent, in Fig. 2d, which corresponds to the type V interference.
Distributions of the heat, pressure and local skin-friction coefficients for this flow regime and different types of interference are shown in Figs. 7, 8, and 9, respectively.

7 Results for the moderate Reynolds numbers

Numerical data obtained by the DSMC technique have been studied at the free-stream conditions of rarefied air ($Re_0 = 124; Kn = 0.012; M_∞ = 6.5; T_0 = 1000 K; t_w = 0.31; \theta = 20$ deg). Mach number contours and streamlines are shown in Figs. 10a and 10b, respectively, for the type III interaction. Thickness of the oblique and bow shocks becomes smaller in comparison with the corresponding results for the more rarefied condition ($Kn = 0.1$). The effective angle of the oblique shock becomes smaller because of the thinner boundary layer along the wedge surface.

![Mach number contours and streamlines](image1)

Fig. 10 Mach number contours and streamlines calculated by the DSMC technique at $Re_0 = 124$ ($Kn_R = 0.012$) for the type III interaction.

![Local Stanton number distributions](image2)

Fig. 11 Local Stanton number distributions around a cylinder at various Reynolds numbers for different types of shock/shock layer interference: a) type III; b) type II.
NUMERICAL AND EXPERIMENTAL STUDIES OF SHOCK INTERFERENCE IN HYPERSONIC FLOWS NEAR A CYLINDER

Fig. 12 Local pressure coefficient distributions around a cylinder at various Reynolds numbers for different types of shock/shock layer interference: a) type III; b) type II.

Fig. 13 Local skin friction coefficient distributions around a cylinder at various Reynolds numbers for different types of shock/shock layer interference: a) type III; b) type II.

The latest phenomenon is pronounced significantly for the type III interference. It results in moving down the actual stagnation point, which is identified from distributions of heat, pressure, and skin friction (see Figs. 11a, 12a, and 13a). For other interference types this phenomenon is not pronounced (see Figs. 11b, 12b, and 13b for the type II interference).

Concluding Remarks
The different types of interference between the impinging plane oblique shock wave and the shock layer near a cylinder have been studied at low and moderate Reynolds numbers. It has been found that the type IV interference does not take place in the flow regimes studied experimentally or computationally using both the direct simulation Monte-Carlo technique and the Navier-Stokes equations. Interference of this type occurs only at higher Reynolds numbers when the inclined shock impinges on the part of the bow shock almost perpendicular to the free-stream velocity vector. In this case the gas passing through the system of oblique secondary shocks forms a supersonic jet, in which the total pressure is much higher than in the surrounding subsonic flow. For types VI, V, and III interference patterns, the maximum pressure and heat flux parameters on the cylinder surface are considerably greater than the values in the absence of interference. This
fact is in a good agreement with known experimental and analytical results.

References

Copyright Statement

The authors confirm that they hold copyright on all of the original material included in their paper. They also confirm they have obtained permission, from the copyright holder of any third party material included in their paper, to publish it as part of their paper. The authors grant full permission for the publication and distribution of their paper as part of the ICAS2008 proceedings or as individual off-prints from the proceedings.