MA 112 – College Algebra

Dr. Stefan Ehrlich

Graduate Computer Science / Mathematics Department
Spring Semester, 2006

Contact Info:
Phone: 603-888-1311x8531
Office: Sylvia Trottier - 313
Email: sehrlich@rivier.edu

Office Hours:
Monday 2:00- 3:30
Tuesday 1:30- 2:30, 4:00- 6:00
Thursday 1:30-2:30, 4:00-5:30

Text:
Algebra for College Students
Jerome E. Kaufman
PWS Pub, Co., Seventh Edition

Brief Course Description:
This course covers concepts ranging from elementary algebra up to, but not including, precalculus. It is designed for use as either a single introductory algebra course or a stepping-stone to more advanced mathematical courses, such as precalculus/calculus. A solid understanding of the topics covered in college algebra is essential for study in computer sciences, physical and life sciences, business and economics, and engineering.

Course Objectives:
To provide a basic working knowledge of the tools and thought processes underlying elementary and college algebra. These include:

Basic concepts- exponents, radicals, factoring, absolute value, inequalities
First and Second Degree Equations with Applications
Polynomials
Rational Expressions
Graphing Techniques

Think of these three challenges:
Learn to think- Carefully Critically Creatively

Classroom Policies:
Students are expected to attend and participate in all classes. Attendance is taken at the beginning of each class. Please notify the instructor in advance of any anticipated absence whenever possible. It is your responsibility to make up any material missed whenever you are absent from class. Assignments are taken from exercises in the text. The homework problems are always covered in class and you are expected to read the section of text corresponding to the homework assignment. Questions about the problems should be raised at the next class meeting. The study of mathematics/computer science requires regular work and plenty of practice. Postponed homework usually results in poor comprehension and performance.
Teaching Strategies:
Lecture format, built around the textbook readings with numerous examples chosen to illustrate theoretical concepts. Lots of drill with emphasis on practice, practice, and more practice. Questions are encouraged and discussion of material stressed.

Course Requirements and Grading Policies:
Students will be evaluated based on two midterms and a final exam as follows:

- Midterm 1 - 25%
- Midterm 2 - 25%
- Final - 50%

All tests are closed book and the final is comprehensive. The results will be converted to a letter grade in keeping with grading policies of the college.

Prerequisites: Math 100 or permission of the instructor.

Material Covered:
1 - Introduction to Course
 Review of Basic Material on a Limited and as Needed Basis

2 – Equations and Inequalities
 First Degree Equations
 Equalities and Inequalities
 Absolute Value

3- Linear Equations and Inequalities in Two Variables
 Rectangular Coordinate System
 Distance between Points
 Linear Equations and Inequalities in Two Variables
 Slope
 Determining the Equation of a Line

4- Quadratic Equations and Inequalities
 Quadratic Formula
 Quadratic Inequalities (optional)

5 – Polynomials
 Sum , Difference, Product, and Quotient
 Factoring
 Simplifying Complex Fractions (optional)

6 – Rational Expressions
 Simplification
 Addition, Subtraction and Multiplication
 Long Division
7 – Exponents and Radicals
 Laws of Exponents
 Roots and Radicals
 Writing Radicals in Exponential Form and Vice-Versa
 Scientific Notation

8- Functions (as time permits)
 Relations and Functions, Composition and Inverse

9- Exponential and Logarithmic Functions (as time permits)
 Exponential Functions
 Logarithms and Logarithmic Functions

10- Systems of Equations (as time Permits)
 Gaussian Elimination in 2x2 and 3x3 Cases

11- Matrices and Determinants (as time permits)
 Matrix Form of Gaussian Elimination
 Determinants and Cramer’s Rule

12– Sequences and Series (as time permits)
 Arithmetic Sequences and Series
 Geometric Sequences and Series